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NASA Astrophysics ObjectivesNASA Astrophysics Objectives
Structure and Evolution of the Universe 

– Discover what powered the Big Bang and the nature of the mysterious dark energy

– Learn what happens to space, time, and matter at the edge of a black hole

– Understand the structure and the cycles of matter and energy in the evolving Universe
• Production of chemical elements? Tracing energy and magnetic fields that distribute elements? 
• Extreme astrophysical environments?

Origins Objectives
– To understand how today’s universe of galaxies, stars, and planets came to be

• How did the cosmic web of matter organize into the first stars and galaxies? 
• Different galactic ecosystems and which can lead to planets and living organisms? 

– To learn how stars and planetary systems form and evolve
• How do gas and dust become stars and planets? 
• Planetary systems around other stars, their architectures and evolution? 

– To explore the diversity of other worlds and search for those that might harbor life
• What are the properties of planets orbiting other stars?
• Terrestrial planets: Abundance? Properties? Habitable?
• Is there life on planets outside the solar system?
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High Spectral Resolution AstrophysicsHigh Spectral Resolution Astrophysics

What causes and controls star formation?
– Little evidence on how/why molecular clouds collapse

– Few ways to observe early phases of star formation
• Optically thick in IR and visible (only see envelop)
• Often very cold <10K in cold core
• Most molecules depleted onto grains

– Little evidence for competing theories
• Does gravity and turbulence cause collapse?
• Does magnetic fields allow/prevent collapse?

How do planets form in the debris disk?
– How do terrestrial planets form?

– Formation rates and planet types?

– Distribution of Water and Organic Molecules?

– Solar system architectures?

– What remains of the debris disk, how representative of the initial conditions?
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High Spectral Resolution AstrophysicsHigh Spectral Resolution Astrophysics

The local ISM and implications to other galaxies
– What causes molecular clouds to form and dissipate?

– How diffuse is the diffuse ISM?

– What is the ISM distribution and phase distribution in the Milk Way?

– What governs the transport and distribution of molecules and dust in the ISM?

– What are the carriers diffuse interstellar bands?

– What are the carriers of the 3 micron PAH bands?

– Isotopic fractionation and potential depletion in cold clouds?
• Is Deuterium depleted in molecules and dust?

– Interaction of stars with the ISM?

– Chemistry and chemical evolution?

All of these topics can be effectively studied by spectroscopy of atomic and 
molecular lines in the far Infrared.
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Underlying PhysicsUnderlying Physics
Long Wavelength Spectroscopy: black (gray) body with atomic and molecular features 
on top

Spontaneous Line Emission

Line widths (1/A) <10-3 km/s in the Far-IR 
– 2 Debye at 100µm is A=~10-4 sec

Most dense molecular cloud <108/cm2 Collision rate is <1/sec
– Pressure broadening is negligible (<10-4 km/s)

In Far IR observed line shape and shift is entirely Doppler
– Line width gives a temperature (300K is a few km/s)

– Line shape probes turbulence

– Relative Velocity (Red Shift)
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Exploiting Line ShapesExploiting Line Shapes
Exploiting a line shape requires a spectrometer

– Minimum of 3 spectral resolution elements across the line (10-20 is optimal)
• Trade-off between sensitivity and information

In Far Infrared four choices of spectrometers
– Disperssive Spectrometer (grating/prism or equivalent)

• R=~103 Limited by grating size (R=length/λ)

– Fabry-Perot Spectrometer 
• R=~104 Limited by Finesse of cavity

– Fourier Transform Spectrometer
• R=~105 Limited by length of moving arm

– Heterodyne Spectrometer
• R determined by LO spectral purity and backend spectrometer ~108 in Far IR

For R>105 in the Far-IR coherent spectroscopy is the only practical choice.

For R>103 system considerations make coherent worth considering
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Advantages and DisadvantagesAdvantages and Disadvantages
Advantages to coherent systems

– Cooling detectors below 4K is not critical

– Warm apertures and optics may be employed

– Earth orbit (and high data rates) may be used

– Detectors are insensitive ionizing radiation

– IF data may be duplicated with no loss
• Interferogram may be repeated
• Infinite number of baselines are possible
• Interferometer baseline is not limited by diffraction

– Stray light less critical

Disadvantages
– Limited by quantum noise

– Difficult to build large arrays

– Complex system with multiple components

– Limited Spectral Bandwidth (photometry difficult or impossible)

– Standing waves everywhere
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Star Formation Line WidthsStar Formation Line Widths

Left N2H+ lines in a variety of cores showing progressively more turbulence form Caselli et al. 2002
Right N2H+ and D2H+ in a variety of cores from Gerin et al. 2001. 
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Source Structure = MapsSource Structure = Maps

Model of optically thin line (left) in disk velocity field histogram is kinematic solid line includes
10K thermal broadening. Inset is observation of L1544 N2H+ J=1-0 from Caselli 2003 
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Existing and being StudiedExisting and being Studied

SAFIR is planning to have high spectral resolution
SPIRT will not have high spectral resolution
SPECS would like R~105 
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What Needed & MissingWhat Needed & Missing
High spatial resolution (<1”) with high spectral resolution R~107

– Star formation details 

– Limited mapping speed at high angular resolution

– Requires interferometer multiple apertures

Rapid line mapping ability R~104-107

– ISM details

– Interaction of ISM with stars

– Requires spatial array single aperture

At higher spatial resolution high spectral resolution becomes more important in 
studying galaxies.

Progression of missions to fill gaps under discussion
– SPICA and SAFIR are on road maps and under study

– Many proposed missions could fill the longer range gaps

– Available technology & resources will dictate choices
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Existing Far IR Mixer TechnologyExisting Far IR Mixer Technology
SIS mixer technology (well proven, well understood)

– ~3x Quantum limit to 700 GHz  

– 5-10x quantum limit to 1.3 THz

– Good technical prospects to 1.5 THz

– Widely used on ground

– Will never achieve quantum limit above superconductor band gap

Hot Electron Bolometer technology (Limited understanding)
– 10-20x quantum limit to 5 THz 

– Being used in SOFIA, HERSCHEL and several ground instruments

– Ultimate sensitivity is an open question (is sensitivity wasted in heat sink?)

Other Detectors early in development
– Kinetic Inductance

– Inter-Sub semiconductors

IF technology adequate (~100uW per mixer)
– lower dissipation would help arrays
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Existing LO TechnologyExisting LO Technology

Harmonic generation (works to ~2 THz)
– Power will be limited above 1 THz

– Noise grows with number of harmonics and will eventually become a problem

– Currently expensive and complex at high frequencies

Gas Lasers 
– Large DC power required

– Single frequencies

Emerging technologies
– Laser mixing 

• Poor conversion efficiency to date

– Quantum cascade lasers (promising to about 1.5 THz)
• No control scheme (yet)
• DC Power and heat load still quite high
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SystemsSystems
Systems expertise is needed in two areas

– Spatial arrays of receivers
• Several ground based systems have been employed

– Phase array systems
• CARMA, SMA, ALMA will do basic development
• Higher frequency issues need to be addressed

Receiver components must be simplified
– Increased functional integration (MMIC style implementation)

– Automated test and assembly

– Reduced unit cost

Support equipment requiring development 
– Coolers

– Lower power back end spectrometers

– deployable apertures

– down link bandwidth
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ConclusionsConclusions

The future is usually determined by what can be implemented
– Coherent receivers to make high resolution spectral and spatial maps can be 

implemented on short time scales with largely existing technology

– The science return is enormous and complementary to other operational missions

A large single dish (SAFIR or an Origins concept is needed in the short term)
– Good reasons to optimize the mission for high resolution spectroscopy or photometry

An interferometer with very high spectral resolution is required for star and 
planet formation details

– Molecular depletion requires this instrument to look at hydrogen molecules

– Habitability questions requires the instrument to study water
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